If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-576=0
a = 2; b = 10; c = -576;
Δ = b2-4ac
Δ = 102-4·2·(-576)
Δ = 4708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4708}=\sqrt{4*1177}=\sqrt{4}*\sqrt{1177}=2\sqrt{1177}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1177}}{2*2}=\frac{-10-2\sqrt{1177}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1177}}{2*2}=\frac{-10+2\sqrt{1177}}{4} $
| 4(5.50h-2.75)=121 | | 50=-5c | | 3x+14=2X3,-9 | | 27/b=5 | | 5x+1+8x-14=180 | | 13n-14=8 | | 21+5x+1+8x-14+90=180 | | x^2-8+16=24 | | 5*8x=405 | | 5x+1+8x-14+90=180 | | x*1.2=1.26 | | 6m-3/7=19 | | (107+x)=(4x-58 | | 4x+13=-9-3(x+9;x+-7 | | -88=-x-10 | | 47=y-20 | | 2y+4=3(y-2) | | 13=r-10 | | x/2+2x=100 | | 3v-2=-20 | | 4r-33=3(3r+4) | | 176=13-y | | (3x–2)=2 | | x^2-152=0 | | 5x+4=150 | | y/2+8=-2 | | 2x=90-15 | | 60x+6=78 | | 5³x-6=12 | | 3-(3m+7)=43 | | 3x-6=3(2+x) | | (x-6)(x+.7)=0 |